

Acoustic regulation in hospitals – Interior acoustics improving the recovery of patients

Georg Schöner
Public Affairs &
Sustainability Manager

1

Impacts of room
acoustics on patients

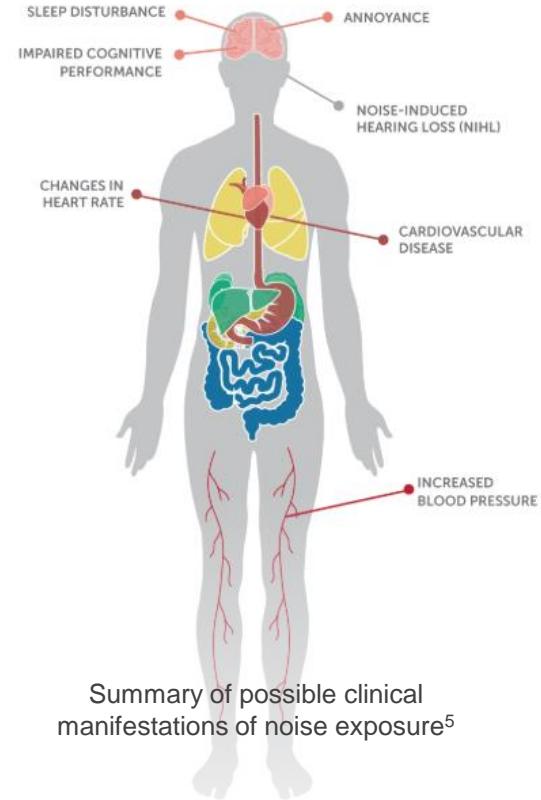
2

Room acoustic
requirements for
hospitals in building
regulations

3

Conclusions

What determines our state of health?


*“Health is a state of complete **physical, mental, and social well-being**. Not merely the absence of disease or infirmity.”*

World Health Organization

Source: Centers for Disease Control and Protection. Frequently Asked Questions. 2014. Available online at: <http://www.cdc.gov/nchhstp/socialdeterminants/faq.html>
Copyright© 2017 by International WELL Building Institute PBC – All rights reserved

“ The rampant noise found in hospitals is caused by patients, staff, medical alerts, etc., making hospitals unable to meet the desirable acoustic levels. ”

“ An increase of noise levels in a room is directly associated with an increased risk of hypertension¹ (unhealthy blood pressure), diabetes², obesity³, hyperactive⁴, etc. ”

Sources: ¹ Ettehad et al 2016; Meline et al 2015; Ta-Yuan Chang et al 2013

² Sorensen et al 2013, Recio et al 2016; Dzhambov 2015

³ Dzhambov and Dimitrova 2016; Christensen et al 2016

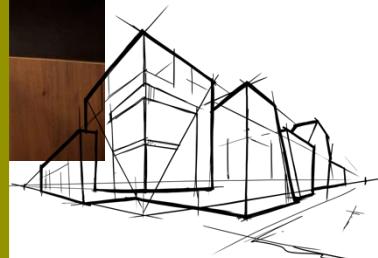
⁴ Dreger et al 2015; Stansfeld and Clark 2015

⁵ IWBI, Acoustics WELLgraphy, Figure 12 page 86

Acoustics in hospitals – WHO guidelines

WHO recommends, for a good night sleep, an average of 30dB noise levels and no peaks exceeding 45 dB

35dB


max. average noise levels
in rooms for patient
treatment or observation ¹

30dB

for ward rooms ¹

40dB

max. for noise peaks
during the night ¹

Sources: ¹ Berglund et al., "Guidelines for community noise", Technical Report 1999, World Health Organization

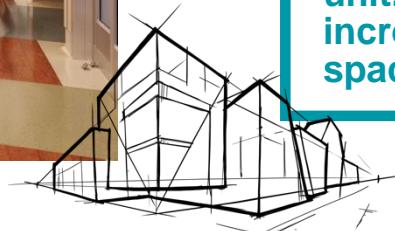
Acoustics in hospitals – Reality

Busch-Vishniac et al.'s analysis of noise data in hospitals between 1960 to 2005 shows that...

“...no hospital complied with WHO guidelines¹”

Sources: ¹ Busch-Vishniac et al., “Noise Levels in John Hopkins Hospital”, Journal of the Acoustical Society of America, Dec 2005, 118(6), p3629-3645

Acoustics in hospitals – Insights


"unwanted sound"
can increase heart
rate, blood pressure
and the respiration
rate of patients.¹

84%

of anesthesiologists
reported that the noise
levels in their operating
rooms negatively
affected their work.²

Overpopulation can contribute
to tension & fear in a hospital
unit. Employees performance
increase in safe, calm and
spacious environments ³

Sources: ¹ UK Government Department of Health: Health Technical Memorandum 08-01: Acoustics (2013)

² Katz, J. D, MD, Noise in the Operating Room, The American Society of Anesthesiologists, Inc.; 2014

³ United Kingdom Department of Health, "Health Building Note 03-01: Adult acute mental health units", 2013, p6–11

Acoustics in hospitals – Insights

60%

of emergency department staff regard noise in their work environment as “somewhat” or “very” burdensome ¹

83%

of communication in an emergency division is face-to-face or via phone ³

70%

of key medical mistakes in the emergency divisions can be traced back to communication shortcomings ²

Sources: ¹ M. Simon, P. Tackenberg et al., Auswertung der ersten Befragung der NEXT-Studie in Deutschland. Wuppertal University, 2005

² Joint Commission. Sentinel Event Data, Root Causes by Event Type, 2010

³ Woloshynowych, Davis et al., “Communication patterns in a UK emergency department”, Ann. Emerg. Med., Oct 2007, 50(4), p407-413

Light in hospitals

Designs that have good acoustics, minimize the risk of crowding and having natural light and ventilation are important in helping to create a positive therapeutic atmosphere ²

15%

reduction in hospitalization time, for patients in southern facing rooms. They had an average stay of 16.9 days compared to 19.5 days for those in northern facing rooms¹

Access to natural light regulates the body's circadian system and prompts the brain to suppress the production of melatonin, increasing sleep efficiency from 77.5% to 90%,

12,5%

Increase, improving recovery time. ³

Sources: ¹ Kathleen M Beauchemin, Peter Hays, Sunny hospital rooms expedite recovery from severe and refractory depressions, Journal of Affective Disorders 40 (1996) 49-51

² United Kingdom Department of Health, "Health Building Note 03-01: Adult acute mental health units", 2013, p6-11

³ Boyce, P., Hunter, C., & Howlett, O. (2003). The benefits of daylight through windows. Troy, NY: Rensselaer Polytechnic Institute.

1

Impact of room
acoustics on
patients

2

Room acoustic
requirements
for hospitals in
building
regulations

3

Conclusions

Acoustic classification schemes in hospitals for 8 European countries

Country	Classification scheme for Healthcare facilities	
Finland	SFS 5907:2004	yes
Island	IST 45:2016	yes
Norway	NS 8175:2012	yes
Sweden	SS 25268:2007	yes
Lithuania	STR 2.01.07:2003	yes
Latvia	LBN 016-15	yes
Italy	UNI 11367:2010	yes
Turkey	Reg. protection against noise (2017)	yes

→ Without a classification scheme for healthcare facilities:
Denmark, Germany, Austria, Netherlands, France, Poland, Portugal, ...

Sources: ¹ after B. Rasmussen, 2018: Acoustic classification of buildings in Europe – Main characteristics of national schemes for housing, schools, hospitals and office buildings. Proceedings of EuroNoise 2018.

Room acoustic regulations for hospitals vs schools in 12 countries

Country	Room acoustic regulation for hospitals	Room acoustic regulation for schools	Sources
Belgium	no	yes	for schools: NBN 01-400-2 (2012), for non-residential buildings: NBN 01-400-3 in the works
Netherlands	no	yes	for schools: Programma van Eisen Frisse Scholen 2015, Rijksdienst voor Ondernemend Nederland in opdracht van het ministerie van Binnenlandse Zaken en Koninkrijksrelaties (versie september 2015).
Germany	yes	yes	for schools and hospitals: DIN 18041:2016-03
France	yes	yes	for schools: Arrêté du 25 Avril 2003 relatif à la limitation du bruit dans les établissements d'enseignement and hospitals: ... de santé
Italy	no	yes	for schools: UNI 11532-2 2019
Spain	yes*	yes	for schools: Documento Básico HR, Protección frente al ruido; page 10, section 2.2 *for hospitals: generic regulation, for common areas of hospitals (meaning halls, stairs, communal zones) the same as for treatment rooms
England	no	yes	for schools: Approved Document E BB 93 "Acoustic Design of Schools" 2014 for hospitals: only a guidance from England Department of Health "Health Technical Memorandum (HTM) 08-01
Denmark	yes	yes	for schools: Bygningsreglementet BR18, Lydforhold (§ 368 - § 376) → Vejledning til undervisningsbygninger for hospitals: → Vejledning til hospitaler laegehuse og klinikker
Norway	yes	yes	for schools and hospitals: Byggeteknisk forskrift (TEK 17) → preaccepted rules to NS 8175 class C
Sweden	yes	yes	for schools and hospitals: Boverkets byggregler (BBR, BFS 2015:3) → SS 25268:2007+T1:2017
Finland	yes	yes	for schools and hospitals: 796/2017 Decree of the Ministry of the Environment on sound insulation and noise abatement in buildings
Poland	yes	yes	for schools and hospitals: PN-B-02151-4: 2015-06: Building acoustics - Protection against noise in buildings - Part 4

Example 1: Danish building regulation

→ 6.4 Rumakustik i hospitaler, lægehuse og klinikker

Tabel 6.4 indeholder forslag til projekteringsværdier for efterklangstid i udvalgte rumtyper i sengestuer og undersøgelses- og behandlingsrum svarende til overholdelse af BR18's generelle bestemmelse om, at brugerne skal sikres tilfredsstillende lydforhold.

Forslag til projekteringsværdier er gengivet fra SBi-anvisning 258, dog med undtagelse af grænseværdien for efterklangstid i sengestuer, hvor værdien ændret til 0,6 s svarende til den angivne efterklangstid for øvrige rumtyper.

Referencer findes i [afsnit 1.5](#).

Supplerende vejledning, der ikke nødvendigvis skal overholdes for at opfylde bygningsreglementets funktionskrav, er anført separat i tabellerne (i kursiv).

Hospitaler, lægehuse og klinikker – Tabel 6.4 Rumakustik – forslag til projekteringsværdier

Efterklangstid [3]	T¹⁾	Frekvensområde
Sengestuer ²⁾	$T \leq 0,6 \text{ s}$	125-4000 Hz
<i>Undersøgelsesrum, behandlingsrum mv.²⁾</i>	$T \leq 0,6 \text{ s}$	125-4000 Hz

Noter

1) Maksimumsværdierne for efterklangstiden gælder for hvert 1/1-oktavbånd i de angivne frekvensområder.

Ved 125 Hz kan den angivne maksimumsværdi dog tillægges 20 %.

2) Projekteringsværdierne gælder i møblerede rum.

Example 2: Swedish standard referred to in building regulation

→ RT_{20} for

care facilities

Tabell 5 – Längsta tillåtna efterklangstid, T_{20} , för vårdlokaler

Typ av utrymme	T_{20} s			
	A	B	C	D
5a Utrymme med särskilda krav på dämpad ljudmiljö <i>exempelvis intensivvård, uppvakningsrum, talträning, storköksutrymme, diskrum</i> <i>Intensive care, recovery room, speech therapy, large kitchen space</i>	0,4	0,5	0,5	0,6
5b Små utrymmen för simning och bad <i>exempelvis bassängrum</i> <i>swimming pool and bathroom</i>	0,6	0,8	0,8	–
5c Övriga utrymmen där människor vistas mer än tillfälligt <i>exempelvis undersökning, behandling, förlossning, OP-sal inkl. stödjande ytor, sjukgymnastik, patientrum, vårdrum, jourrum, expedition, kontor, laboratorium, reception, dagrum, väntrum, personalrum, avdelningskorridor, konferensrum, utbildning, matsal, vardagsrum eller samlingssal</i> <i>examination, treatment, child delivery, operation, patient room, offices, ...</i>	0,5	0,6	0,6	–
5d Utrymmen där människor vistas tillfälligt <i>exempelvis förbindelsestråk inkl. hisshall, vilrum, entréer</i>	0,6	0,8	0,8	–
5e – dock i trapphus	1,0	1,2	1,5	–

Example 3: Norwegian standard referred to in building regulation

→ NS 8175:

2019
version

Tabell 22 – Lydklasser for helsebygninger – Romakustikk

Type brukerområde	Måle-størrelse	Enhet	Klasse A	Klasse B	Klasse C	Klasse D
I fellesareal, TV-stue * common areas	$\bar{a} \geq$	-	0,30	0,25	0,20	0,15
I fellesareal, TV-stue	$T_h \leq$	s	$0,13 \times h$	$0,16 \times h$	$0,20 \times h$	$0,27 \times h$
I undersøkelsesrom, behandlings-rom, operasjonsstue, senge- eller beboerrom ^b examination-, treatment-, operation-, and bed rooms	$T \leq$	s	0,4	0,5	0,6	0,8

a Med mindre det kan dokumenteres at det er unødvendig, skal det installeres lydutjevningsanlegg (fordelte høytalere) eller sentrale høytalere med retningsegenskaper tilpasset dekningsområdet der det er behov for å sikre god taleoppfattelse og kunnskapsformidling. Dette er spesielt aktuelt ved lavt talenivå, forstyrrende støy og lange etterklangstider. Slike anlegg kan kompletteres med teleslynge eller annet tilsvarende trådløst lydoverføringsutstyr. Der det er mange rom med tilnærmet samme størrelse og brukermulighet, er det tilstrekkelig at 1/10 og minst ett av disse rommene har teleslynge eller annet mikrofonbasert, trådløst overføringsutstyr. I noen tilfeller er det også behov for individuelt tilpassede tekniske hjelpemidler i tillegg til at det gjøres bygningsakustiske tiltak slik at kravene til universell utforming blir oppfylt.

b Behovet for god talekommunikasjon og konfidensielle samtaler skal sikres med individuelt tilpassede tekniske hjelpemidler der det er behov for dette, i tillegg til at det gjøres bygningsakustiske tiltak. Se også veiledning i NS 11001-1.

Example 4: German standard

→ Group A:

audibility over
medium and
larger
distances.

→ Group B:

audibility over
small distances

Tabelle 3 — Orientierungswerte für das Verhältnis von äquivalenter Schallabsorptionsfläche A zum Raumvolumen V

Nutzungsart	bei Raumhöhen $h \leq 2,5$ m	bei Raumhöhen $h > 2,5$ m
	m^2/m^3	m^2/m^3
B1	ohne Anforderung	ohne Anforderung
B2	$A/V \geq 0,15$	$A/V \geq [4,80 + 4,69 \lg (h/1\text{ m})]^{-1}$ (7)
B3 examination-, treatment-, operation-, patient room	$A/V \geq 0,20$	$A/V \geq [3,13 + 4,69 \lg (h/1\text{ m})]^{-1}$ (8)
B4	$A/V \geq 0,25$	$A/V \geq [2,13 + 4,69 \lg (h/1\text{ m})]^{-1}$ (9)
B5 intensive care, wake-up room, canteen	$A/V \geq 0,30$	$A/V \geq [1,47 + 4,69 \lg (h/1\text{ m})]^{-1}$ (10)

Dabei ist

A die äquivalente Schallabsorptionsfläche eines Raums in Quadratmeter

V das Raumvolumen in Kubikmeter

h die lichte Raumhöhe in Meter

Room acoustic regulation for hospitals in 8 countries

Country	Patient rooms	Treatment rooms	Common areas	Comment
Germany	A/V ≥ 0.20 (room type B3)	A/V ≥ 0.20 (room type B3) and A/V ≥ 0.3 (type B5; intensive care)	A/V ≥ 0.15 (room type B2)	Values for $h \leq 2.5m$ (A = hypothetical/equivalent absorption area of the room in m ² with sound absorption coefficient = 1)
France		RT ≤ 0.8 s (Staff room: RT ≤ 0.5 s)	Lobby: RT < 1.2 s Hallways: A/FA > 0.25	Room volumes 250 - 512 m ³ : RT < 1.2 s >512 m ³ : RT $< 0,15^*(V)^{(1/3)}$
Spain		A/V > 0.2	A/V > 0.2	
England		A/FA > 0.8 (for class C absorber)		Only a guidance from England's Department of Health "Health Technical Memorandum (HTM) 08-01"
Denmark		RT ≤ 0.6 s		
Norway		RT ≤ 0.6 s (class C)	RT $\leq 0.2 \times h$	Standard updated in 2019
Sweden	RT ≤ 0.6 s (class C)	RT ≤ 0.6 s and ≤ 0.5 s for intensive care (class C)		Standard updated in 2019
Finland		RT ≤ 0.8 s, STI > 0.6		
Poland		RT ≤ 0.8 s	Waiting rooms: A $\geq 0.8 \times S$ Hallways: A $\geq 0.8 \times S$	(S = rzutu pomieszczenia, floor area)

1

Impact of room
acoustics on
patients

2

Room acoustic
requirements
for hospitals in
building
regulations

3

Conclusions

Conclusions & call to action

WHO guidance exists for the past 20 years ...

... still most hospitals do not reach the recommended levels

Ambitious classes in a future ISO acoustic classification standard for hospitals should be the key reference for all national regulation (e.g. TS 19488 for dwellings)

➔ Harmonization of acoustic descriptors and zoning of hospitals

Consistent acoustic classification of existing hospitals

Coordinated lobby efforts during the update of national regulations and creation of EU directives (such as EPBD – energy performance of buildings directive).

Support of international efforts – overcome “not invented here attitude”

Rockfon
(ROCKWOOL International A/S)

Georg Schöner
Public Affairs & Sustainability Manager

Hovedgaden 501
DK-2640 Hedehusene
Denmark
georg.schoner@rockfon.com
www.rockfon.co.uk